Browse Publications Technical Papers 2020-01-0383
2020-04-14

An Experimental Methodology for Measuring Resistance Forces of Light-Duty Vehicles under Real-World Conditions and the Impact on Fuel Consumption 2020-01-0383

A key element of any vehicle-certification test is the use of representative values for the vehicle resistance forces. In most certification procedures, including the WLTP recently adopted by the EU, the latter is achieved mainly through coast down tests. Subsequently, the resistance values measured are used for setting up the chassis-dyno resistances applied during the laboratory measurements. These reference values are obtained under controlled conditions, while a series of corrections are applied to make the test procedure more repeatable and reproducible. In real driving, the reference road loads are influenced by a series of factors leading to a divergence between the certified fuel consumption values, and the real-world ones. An approach of calculating representative road loads during on-road tests can help to obtain a clearer view of vehicle efficiency and quickly validate the officially declared road loads. This approach is crucial also for validating simulations and achieving better estimates of the actual fuel consumption, a requirement introduced by the new policy adopted in the EU. In this direction, a series of on-road experiments were conducted, under real-world conditions, on three vehicles, belonging to different vehicle body-categories, a supermini, a B segment SUV city car, and a light-duty commercial vehicle. A wheel torque-measurement system (strain gauge torque sensors) was used to record the torque at the wheels accompanied by a wheel rotational-speed sensor. The present paper presents the results and investigates the capacity of such kind of tests to measure road loads with precision and accuracy. The calculated resistance forces are compared against the ones officially declared at type approval. Results show adequate accuracy and reproducibility. Simulation models are subsequently used to quantify the impact on real-world fuel consumption and CO2 emissions.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Attention: This item is not yet published. Pre-Order to be notified, via email, when it becomes available.
Members save up to 18% off list price.
Login to see discount.
Special Offer: With TechSelect, you decide what SAE Technical Papers you need, when you need them, and how much you want to pay.
X