Browse Publications Technical Papers 2020-01-0511
2020-04-14

Dynamic-static Optimization Design of Parking Robot Lifting Arm with Uncertain Parameters 2020-01-0511

There are many uncertainties in engineering design, and the accumulated uncertainties will enlarge the overall failure probability of the structure system. Therefore, the structural design considering uncertainties is of high significance for improving its reliability. To address this issue, a dynamic-static structural topology optimization model is established and a reliability-based topology optimization (RBTO) with decoupling format is conducted in this study. At First, the design point which satisfies the constraint of target reliability indicator is obtained according to the reliability indictors of the first-order reliability method. Then, according to the sensitivity information of the random variable, the random variable is modified into a deterministic variable. Finally, the reliability-based deterministic topology optimization is performed by dividing the problem into two independent sub-problems of reliability analysis and equivalent deterministic topology optimization (DTO), and the feasibility of the structure optimization method is verified with the parking robot lifting arm. To meet the mechanical performances and lightweight requirements of the parking robot lifting arm, the mathematical model of dynamic-static multi-objective topology optimization for the lifting arm is established by the normalization coefficient, and its finite element model is analyzed by Optistruct. The results show that compared with deterministic topology optimization, reliability-based topology optimization with decoupling format can obtain a higher reliable structure configuration and meet the design requirements on high reliability and safety.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Attention: This item is not yet published. Pre-Order to be notified, via email, when it becomes available.
Members save up to 18% off list price.
Login to see discount.
Special Offer: With TechSelect, you decide what SAE Technical Papers you need, when you need them, and how much you want to pay.
X