A Decentralized Time- and Energy-Optimal Control Framework for Connected Automated Vehicles: From Simulation to Field Test 2020-01-0579
The implementation of connected and automated vehicle (CAV) technologies enables a novel computational framework for real-time control aimed at optimizing energy consumption with associated benefits. In this paper, we implement an optimal control framework, developed previously, in an Audi A3 etron plug-in hybrid electric vehicle, and demonstrate that we can improve the vehicle’s efficiency and travel time in a corridor including an on-ramp merging, a speed reduction zone, and a roundabout. Our exposition includes the development, integration, implementation and validation of the proposed framework in (1) simulation, (2) hardware-in-the-loop (HIL) testing, (3) connectivity enabled virtual reality based bench-test, and (4) field test in Mcity. We show that by adopting such inexpensive, yet effective process, we can efficiently integrate and test the control framework, establish proper connectivity and data transmission between different modules of the system, and reduce uncertainty. We evaluate the performance and effectiveness of the control framework and observe significant improvement in terms of energy and travel time compared to the baseline scenario.
Citation: Mahbub, A., Karri, V., Parikh, D., Jade, S. et al., "A Decentralized Time- and Energy-Optimal Control Framework for Connected Automated Vehicles: From Simulation to Field Test," SAE Technical Paper 2020-01-0579, 2020, https://doi.org/10.4271/2020-01-0579. Download Citation
Author(s):
A M Ishtiaque Mahbub, Vasanthi Karri, Darshil Parikh, Shyam Jade, Andreas A. Malikopoulos
Affiliated:
University Of Delaware, Robert Bosch LLC
Pages: 13
Event:
WCX SAE World Congress Experience
ISSN:
0148-7191
e-ISSN:
2688-3627
Related Topics:
Hybrid electric vehicles
Optimization
Virtual reality
Automated Vehicles
Hardware-in-the-loop
Simulation and modeling
Energy consumption
SAE MOBILUS
Subscribers can view annotate, and download all of SAE's content.
Learn More »