Browse Publications Technical Papers 2020-01-0589

Data-driven framework for fuel efficiency improvement in extended range electric vehicle used in package delivery applications 2020-01-0589

Extended-range electric vehicles (EREVs) are a potential solution for fossil fuel usage mitigation and on-road emissions reduction. EREVs can be shown to yield significant fuel economy improvements when the proper energy management strategies (EMSs) are employed. However, many in-use EREVs achieve only moderate fuel reduction compared to conventional vehicles due to the fact that their EMS is far from optimal. This paper focuses on rule-based optimization methods to improve the fuel efficiency of EREV last-mile delivery vehicles equipped with two-way Vehicle-to-Could (V2C) connectivity. The method uses previous vehicle data collected on actual delivery routes and a machine learning method to improve the fuel economy of future routes. The paper first introduces the main challenges of the project such as inherent uncertainty in human driver behavior and in the roadway environment. Then, the framework of our practical physics-model guided data-driven approach is introduced. For vehicles with small amounts of previous data, a Bayesian method is used to adjust a control parameter in the EMS offline for each vehicle with introduced prior information derived from large numbers of trips from other vehicles. For vehicles with many delivery trips, a reinforcement learning algorithm is used to optimize the parameter in real-time without requiring future information of the trip. Although our data-driven framework cannot achieve the globally optimal solution with respect to the fuel efficiency, it provides a systematic and immediate solution for in-use EREVs used for package delivery with a very low computation cost and no change of the vehicle hardware. Also, this framework is ready to be extended for further fuel economy improvements if more information is available from Vehicle-to-Infrastructure (V2I) connectivity.


Subscribers can view annotate, and download all of SAE's content. Learn More »


Attention: This item is not yet published. Pre-Order to be notified, via email, when it becomes available.
Members save up to 18% off list price.
Login to see discount.
Special Offer: With TechSelect, you decide what SAE Technical Papers you need, when you need them, and how much you want to pay.