Browse Publications Technical Papers 2020-01-0703

Real-Time Motion Classification of LiDAR Point Detection for Automated Vehicles 2020-01-0703

A Light Detection And Ranging (LiDAR) is now becoming an essential sensor for an autonomous vehicle. The LiDAR provides the surrounding environment information of the vehicle in the form of a point cloud. A decision-making system of the autonomous car is able to determine a safe and comfort maneuver by utilizing the detected LiDAR point cloud. The LiDAR points on the cloud are classified as dynamic or static class depending on the movement of the object being detected. If the movement class (dynamic or static) of detected points can be provided by LiDAR, the decision-making system is able to plan the appropriate motion of the autonomous vehicle according to the movement of the object. This paper proposes a real-time process to segment the motion states of LiDAR points. The basic principle of the classification algorithm is to classify the point-wise movement of a target point cloud through the other point clouds and sensor poses. First, a fixed size buffer store the LiDAR point clouds and sensor poses for a constant time window. Second, motion beliefs of the target point cloud against other point clouds and sensor poses in the buffer are estimated, respectively. Each motion belief of the points in the target point cloud is represented by a series of masses of dynamic, static, and unknown based on the evidence theory. Finally, the series of motion belief masses of the target point cloud for the other point clouds and poses are integrated through the Dempster-Shafer combination. The integrated mass value is used to classify the point-wise motion of the target point cloud into the state of dynamic, static, and unknown. The proposed algorithm was quantitatively evaluated through the simulation of LiDAR sensors and surrounding environment. Then, the algorithm was qualitatively validated through the experiments using an autonomous car equipped with LiDAR. The autonomous vehicle was able to perform the 3D point cloud mapping and map-matching localization.


Subscribers can view annotate, and download all of SAE's content. Learn More »


Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:

A Stochastic Physical Simulation Framework to Quantify the Effect of Rainfall on Automotive Lidar


View Details


LiDAR Data Segmentation in Off-Road Environment Using Convolutional Neural Networks (CNN)


View Details


Observer for Faulty Perception Correction in Autonomous Vehicles


View Details