Browse Publications Technical Papers 2020-01-0888
2020-04-14

A Study of Using a Reinforcement Learning Method to Improve Fuel Consumption of a Connected Vehicle with Signal Phase and Timing Data 2020-01-0888

Connected and automated vehicles (CAVs) promise to reshape two areas of the mobility industry: the transportation and driving experience. The connected feature of the vehicle uses communication protocols to provide awareness of the surrounding world while the automated feature uses technology to minimize driver dependency. Constituting a subset of connected technologies, vehicle-to-infrastructure (V2I) technologies provide vehicles with real-time traffic light information, or Signal Phase and Timing (SPaT) data. In this paper, the vehicle and SPaT data are combined with a reinforcement learning (RL) method as an effort to minimize the vehicle’s energy consumption. Specifically, this paper explores the implementation of the deep deterministic policy gradient (DDPG) algorithm. As an off-policy approach, DDPG utilizes the maximum Q-value for the state regardless of the previous action performed. In this research, the SPaT data collected from dedicated short-range communication (DSRC) hardware installed at 16 real traffic lights is utilized in a simulated road modeled after a road in Tuscaloosa, Alabama. The vehicle is trained using DDPG and the SPaT data to determine the optimal action to take in order to minimize the energy consumption at each traffic light.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Attention: This item is not yet published. Pre-Order to be notified, via email, when it becomes available.
Members save up to 18% off list price.
Login to see discount.
Special Offer: With TechSelect, you decide what SAE Technical Papers you need, when you need them, and how much you want to pay.
X