Browse Publications Technical Papers 2020-01-1049
2020-04-14

Large Scale Multi-Disciplinary Optimization and Long-Term Drive Cycle Simulation 2020-01-1049

Market demands for increased fuel economy and reduced emissions are placing higher aerodynamic and thermal analysis demands on vehicle designers and engineers. These analyses are usually carried out by different engineering groups in different parts of the design cycle. Design changes required to improve vehicle aerodynamics often come at the price of part thermal performance and vice versa. These design changes are frequently a fix for performance issues at a single performance point such as peak power, peak torque, or highway cruise. In this paper, the motivation for a holistic approach in the form of multi-disciplinary optimization (MDO) early in the design process is presented. Using a Response-surface Informed Transient Thermal Model (RITThM) a vehicles thermal performance through a drive cycle is predicted and correlated to physical testing for validation. Furthermore, an MDO using RITThM is demonstrated with tradeoff’s and important trends identified and described along with optimal design points. Potential sources of error, areas for improvement, and potential applications of an MDO using RITThM are presented.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Attention: This item is not yet published. Pre-Order to be notified, via email, when it becomes available.
Members save up to 18% off list price.
Login to see discount.
Special Offer: With TechSelect, you decide what SAE Technical Papers you need, when you need them, and how much you want to pay.
X