Browse Publications Technical Papers 2020-01-1107

The Prospect and Benefits of Using the Partial-Averaged Navier-Stokes Method for Engine Flows 2020-01-1107

This paper presents calculations of engine flows by using the Partially-Averaged Navier Stokes (PANS) method (Girimaji [1]; [2]). The PANS is a scale-resolving turbulence computational approach designed to resolve large scale fluctuations and model the remainder with appropriate closures. Depending upon the prescribed cut-off length (filter width) the method adjusts seamlessly from the Reynolds-Averaged Navier-Stokes (RANS) to the Direct Numerical Solution (DNS) of the Navier-Stokes equations. The PANS method was successfully used for many applications but mainly on static geometries, e.g. Basara et al. [3]; [4]. This is due to the calculation of the cut-off control parameter which requires that the resolved kinetic energy is known and this is usually obtained by suitably averaging of the resolved field. Such averaging process is expensive and impractical for engines as it would require averaging per cycles. A recently published work on PANS (Basara et al. [5]) opens a prospect of more cost-effective engine calculations. This new PANS approach solves the additional equation for a total resolved turbulent kinetic energy which enables continuous (in situ) update of the resolution parameter fk. Thus fk. is dynamically specified in time and space depending on the flow and computational meshes. Calculation results of the IC engine will be compared with the measurements which include cycle-to-cycle variations and emission data.


Subscribers can view annotate, and download all of SAE's content. Learn More »


Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:

Visualization of Turbulence Anisotropy in the In-cylinder Flow of Internal Combustion Engines


View Details


Cavitating Flow within an Injector-Like Geometry and the Subsequent Spray


View Details


Virtual Development of Injector Spray Targeting by Coupling 3D-CFD Simulations with Optical Investigations


View Details