Browse Publications Technical Papers 2020-01-1225
2020-04-14

Enhancement of Longitudinal Energy Absorption Efficiency in FMVSS 301 2020-01-1225

While active safety has become a focus of attention, passive safety protocols are still being updated, and evaluation standards are becoming stringent worldwide. This paper focused on FMVSS301, the North American regulation for rear impacts. As it is an offset impact with deformable barrier, it is difficult to control bending modes of rear frames. Furthermore, there is a considerable difference in load input to the left and right frames, and the amount of bending deformation experienced by the frame on the non-collision side, which does not directly contact with the barrier, is low. The purpose of this research was to enhance rear frames energy absorption efficiency in such collisions. To achieve this goal, this research focused on enhancement of deformation mode of the rear frames, and also minimizing the difference in their input loads. For the enhancement of deformation mode, the number and arrangement of collapse points were optimized, and multi-stage bending mode with a high level of energy absorption efficiency was achieved. A partial softening was applied to create an initialization point of bending deformation. In order to reduce the difference in input load, the length of the central flat section of the bumper beam was set such that the area of impact with the barrier would be symmetrical on both left and right side. To maintain clearance between the barrier and the bumper beam end on the collision side as long as possible, other geometrical parameters such as bending angles of the beam were also optimized. A stretch bending method was applied for the manufacturing of prototype beam. This increased the amount of energy absorbed by the frame on the non-collision side. Impact tests conducted using prototype vehicles which satisfy geometric specifications for mass production verified that this approach increased rear frames energy absorption efficiency by 150%.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Attention: This item is not yet published. Pre-Order to be notified, via email, when it becomes available.
Members save up to 18% off list price.
Login to see discount.
Special Offer: With TechSelect, you decide what SAE Technical Papers you need, when you need them, and how much you want to pay.
X