Browse Publications Technical Papers 2020-01-1284

In-Situ Measurement of Component Efficiency in Connected and Automated Hybrid-Electric Vehicles 2020-01-1284

Connected and automated driving technology is known to improve real-world vehicle efficiency by considering information about the vehicle’s environment such as traffic conditions, traffic lights or road grade. This study shows how the powertrain of a hybrid-electric vehicle realizes those efficiency benefits by developing methods to directly measure transient real-time efficiency and power losses of the vehicle’s powertrain components through chassis-dynamometer testing. This study is a follow-on to SAE Technical Paper 2019-01-0116, Test Methodology to Quantify and Analyze Energy Consumption of Connected and Automated Vehicles, to understand the sources of efficiency gains resulting from connected and automated vehicle driving. A 2017 Toyota Prius Prime was instrumented to collect power measurements throughout its powertrain and driven over a specific driving schedule on a chassis dynamometer. The same driving schedule was then modified to simulate a connected and automated vehicle driving profile, and the sources of vehicle efficiency improvements are analyzed. While conventional powertrain components typically only have two sources and sinks of power, e.g. an input and output shaft, the components of modern hybrid-electric vehicles are tightly integrated and have multiple sources and sinks of energy. This study describes the methods used to calculate transient power losses of the vehicle’s powertrain components while considering all sources and sinks, and it presents results of chassis-dynamometer testing.


Subscribers can view annotate, and download all of SAE's content. Learn More »


Attention: This item is not yet published. Pre-Order to be notified, via email, when it becomes available.
Members save up to 18% off list price.
Login to see discount.
Special Offer: With TechSelect, you decide what SAE Technical Papers you need, when you need them, and how much you want to pay.