Capability-Driven Adaptive Task Distribution for Flexible Multi-Human-Multi-Robot (MH-MR) Manufacturing Systems 2020-01-1303
Collaborative robots are more and more used in smart manufacturing because of their capability to work beside and collaborate with human workers. With the deployment of these robots, manufacturing tasks are more inclined to be accomplished by multiple humans and multiple robots (MH-MR) through teaming effort. In such MH-MR collaboration scenarios, the task distribution among the multiple humans and multiple robots is very critical to efficiency. It is also more challenging due to the heterogeneity of different agents. Existing approaches in task distribution among multiple agents mostly consider humans with assumed or known capabilities. However human capabilities are always changing due to various factors, which may lead to suboptimal efficiency. Although some researches have studied several human factors in manufacturing and applied them to adjust the robot task and behaviors. However, the real-time modeling and calculation of multiple human capabilities and real-time adaptive task distribution in flexible MH-MR manufacturing according to human capabilities are still challenging due to the complexity of human capabilities and heterogeneous multi-agent interactions. To address these issues, this paper first proposes a practical modeling approach to model and calculate the capabilities of different humans in real-time using some measurable performance indices. Based on these capabilities, this paper furthermore mathematically models the MH-MR manufacturing process and proposes a capability-driven adaptive task distribution approach with genetic algorithm based solutions to distribute different tasks to humans and robots online. The proposed adaptive approaches are validated through different MH-MR manufacturing tasks and the experimental results show that the approaches can significantly improve the manufacturing efficiency in terms of the time cost and the number of accomplished tasks than existing approaches in the presence of different time-varying human capabilities. Detailed results and statistical comparisons are presented to illustrate the effectiveness and advantages of the proposed solutions.
Citation: Zhang, S. and Jia, Y., "Capability-Driven Adaptive Task Distribution for Flexible Multi-Human-Multi-Robot (MH-MR) Manufacturing Systems," SAE Technical Paper 2020-01-1303, 2020, https://doi.org/10.4271/2020-01-1303. Download Citation
Author(s):
Shaobo Zhang, Yunyi Jia
Affiliated:
Chang’an University, Clemson University
Pages: 8
Event:
WCX SAE World Congress Experience
ISSN:
0148-7191
e-ISSN:
2688-3627
Related Topics:
Manufacturing systems
Mathematical models
Manufacturing processes
Logistics
Robotics
Human factors
Simulation and modeling
Research and development
Collaboration and partnering
Internet
SAE MOBILUS
Subscribers can view annotate, and download all of SAE's content.
Learn More »