Browse Publications Technical Papers 2020-01-1441

Validity Assessment and Calibration Approach for Simulation Models of Energy Efficiency of Light-Duty Vehicles 2020-01-1441

Software tools for simulations of vehicle fuel economy/energy efficiency play an important role strategic decision-making in advanced powertrains. In general, there is a trade-off between the level of detail in a numerical model of a vehicle (higher detail provides better simulation accuracy), and the computational time resources to run the model. However, even with detailed models of a vehicle, there remains some uncertainty about how the vehicle performs in the real-world. Calibration of simulation models versus real-world data is a challenging task due to variations in vehicle usage by different owners. This work utilizes datasets of real-world driving in vehicles that have been equipped with OBD/GPS loggers. The loggers record at fairly high frequency the vehicle speed, road slope, cabin heating/air-conditioning loads, as well as energy/fuel consumption. For six advanced powertrain vehicle models (Bolt, Leaf, Model S, C-Max Energi, Prius Prime, Volt), an assessment is made regarding the accuracy of window-sticker ratings derived from standard dynamometer tests. One key observation is that while window-sticker ratings can be reasonably accurate when considering many trips across different vehicle owners, individual trips and/or averages for individual owners can vary quite a bit from the window-sticker ratings. Next, simulation accuracy/validity assessment is conducted for baseline version of FASTSim, which is an open-source software tool originally developed by NREL. Lastly, a calibration approach via mass and power adjustment terms is proposed. Results show success at improving the fidelity of FASTSim simulations.


Subscribers can view annotate, and download all of SAE's content. Learn More »


Members save up to 17% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.