Browse Publications Technical Papers 2020-01-1515
2020-09-30

A Generic Testbody for Low-Frequency Aeroacoustic Buffeting 2020-01-1515

Raising demands towards lightweight design paired with a loss of originally predominant engine noise pose significant challenges for NVH engineers in the automotive industry. From an aeroacoustic point of view, low frequency buffeting ranks among the most frequently encountered issues. The phenomenon typically arises due to structural transmission of aerodynamic wall pressure fluctuations and/or, as indicated in this work, through rear vent excitation. A possible workflow to simulate structure-excited buffeting contains a strongly coupled vibro-acoustic model for structure and interior cavity excited by a spatial pressure distribution obtained from a CFD simulation. In the case of rear vent buffeting no validated workflow has been published yet. While approaches have been made to simulate the problem for a real-car geometry such attempts suffer from tremendous computation costs, meshing effort and lack of flexibility. Additionally, low frequency structural behavior strongly depends on appropriate boundary conditions being subject to manufacturing and mounting conditions. The goal of this work is to develop, simulate and experimentally validate a generic, easy-to-adjust experimental setup to test and assess low frequency vibro-aero-acoustic optimization strategies. In the final stage, aerodynamic excitation calculated with a CFD software will be used to excite the coupled Finite Elemente (FE) model and compare with wind channel measurements. As a first contribution, the geometry of the testbody is presented along with a suitable FE model. Structural and airborne transmission mechanisms are analyzed and discussed. Finally, the different panel contributions subject to artificial loading are evaluated.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 18% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
X