Browse Publications Technical Papers 2020-01-1531
2020-06-03

NVH Optimization Methods Applied to e-Motors 2020-01-1531

Noise-vibration-harshness (NVH) is now playing an important role in electric vehicle development process. Experience shows that the NVH criteria must be considered at the very early stages of the concept design phase. Finite Elements (FE) models are widely used to simulate the vehicle design. To achieve a correct accuracy of a FE model, the results of an experimental modal analysis (EMA) are commonly applied to a FE model via correlation and updating processes. Thus, different kinds of optimization might be used throughout the concept design duration. This paper describes, first, the use of a parametric optimization to tune a FE model in high frequencies relying on the results of the EMA test. Then the frequency response analysis is conducted to detect the critical frequencies for the NVH performance. Based on the results of this analysis, a topographic optimization is performed. The aim of this optimization is to improve the NVH behavior by mitigating the resonance peaks in specified frequency range and to produce a shape which can be stamped with required constraints. Both parametric and topography optimizations are carried out with a help of a dedicated FE software. The study shows two main aspects of optimization: the speed-up of the updating time of a FE model and the reducing of an e-motor noise and vibration by implementing new optimized shapes.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Attention: This item is not yet published. Pre-Order to be notified, via email, when it becomes available.
Members save up to 18% off list price.
Login to see discount.
Special Offer: With TechSelect, you decide what SAE Technical Papers you need, when you need them, and how much you want to pay.

Due to current capacity constraints, printed versions of our publications - including standards, technical papers, EDGE Reports, scholarly journal articles, books, and paint chips - may experience shipping delays of up to two weeks. We apologize for any inconvenience.
X