Browse Publications Technical Papers 2020-24-0018

Modelling of a 15-kW Electric Utility Vehicle and Range Assessment through Driving Cycle Analysis Based on GPS Experimental Data 2020-24-0018

The electrification of utility vehicles represents a promising solution to reduce the emissions in the urban context. Differently from traditional vehicles, they operate intermittently and generally follow routine driving cycles. In this paper, we model a 15-kW electric utility vehicle, adopting a backward-looking approach, widely used in literature to estimate the range of electric cars. The model requires a limited number of data, either supplied by the vehicle manufacturer or found in literature, as in case of the induction motor/generator efficiency and of the battery Peukert coefficient. The model can be used to assess the possibility of the vehicle to complete an assigned mission, as well as to optimize the vehicle’s design and architecture. The model is validated on GPS data obtained through an experimental campaign where the electric utility vehicle was driven to depletion considering different routes, including the effect of slopes. A satisfactory correspondence with the experimental data was observed with maximum difference in the simulated average energy consumption lower than about 8%. Results of the simulations show that the range of the electric utility vehicle is about 110 km on urban flat cycle while it significantly reduces when slopes are included in portions of the routes.


Subscribers can view annotate, and download all of SAE's content. Learn More »


Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:

Recommended Practice for Performance Rating of Lead Acid and Nickel Metal Hydride Electric Vehicle Battery Modules


View Details


Test Procedure for Battery Flame Retardant Venting Systems


View Details


Test Procedure for Parking Stability of Motorcycles


View Details