Design Modification of Brake Disc and Brake Pad to Increase the Heat Transfer Rate and Clamping Area through Thermal and Structural Analysis for Automobiles 2020-28-0392
During braking a large amount of kinetic energy will be transformed into thermal energy thereby increasing the brake disc temperature around 200oC to 500oC in motorcycles and ATVs, which forces to improve the heat transfer in brake disc by providing grooves and holes and this minimize the clamping area between the brake pad and disc, thus resulting in uneven contact thereby reducing the clamping force. In which the present study is mainly done to improve the clamping force on the brake disc through re-coined the shape of grooves with various disc materials by design and analysis route. The brake disc is modelled with triangular groove around the radial diameter of the Aluminium metal matrix composite (AA8081 reinforced with 15wt% of SiC and 3wt% of Gr), Stainless Steel (SUS 410) materials data set. The couple field analysis attempts of both thermal and structural analysis was done to find the impact on the brake disc heat transfer rate, deformation, von Mises stress and strength which were analyzed by ANSYS workbench. To assure safe braking condition, towards increase in the area of contact between the brake pad and disc material of AA8081 reinforced with 15wt% of SiC and 3wt% of Gr shows better responses were observed than other grades. Due to the better heat transfer rate for both aspects of proposed grooves with high strength composites. This out reached design and material may suitable for automobiles in next level of alternatives in brake disc.
Citation: Ranganathan, S., Jayaraman, A., Udhayakumar, S., and Kumar K, S., "Design Modification of Brake Disc and Brake Pad to Increase the Heat Transfer Rate and Clamping Area through Thermal and Structural Analysis for Automobiles," SAE Technical Paper 2020-28-0392, 2020, https://doi.org/10.4271/2020-28-0392. Download Citation
Author(s):
Soundararajan Ranganathan, Akash Jayaraman, Sabarivasan Udhayakumar, Sathish Kumar K
Affiliated:
Sri Krishna College of Engg. and Tech.
Pages: 18
Event:
International Conference on Advances in Design, Materials, Manufacturing and Surface Engineering for Mobility
ISSN:
0148-7191
e-ISSN:
2688-3627
Related Topics:
Brake discs
Brake pads
Heat transfer
SAE MOBILUS
Subscribers can view annotate, and download all of SAE's content.
Learn More »