Browse Publications Technical Papers 2020-37-0017
2020-06-23

Fuel Consumption and Emission Reduction for Hybrid Electric Vehicles with electrically heated Catalyst 2020-37-0017

Hybridization is a promising way to further reduce the CO2 emissions of passenger vehicles. However, high engine efficiencies and the reduction of engine load, due to torque assist by an electric motor, cause a decrease of exhaust gas temperature levels. This leads to an increased time to light-off of the catalysts resulting in an overall lower efficiency of the exhaust aftertreatment system. Especially in low load driving conditions, at cold ambient temperatures and on short distance drives, the tailpipe pollutant emissions are severely impacted by these low efficiency levels. To ensure lowest emissions at all driving conditions, catalyst heating methods must be used. In conventional vehicles internal combustion engine measures, e.g. late combustion can be applied. A hybrid system with an electrically heated catalyst enables further methods such as the increase of engine load, the so-called load point shifting by the electric motor or using the energy from the battery for electric catalyst heating. Since these methods result either directly or indirectly in additional fuel consumption there is a conflict of objectives between a fast catalyst heat up and the reduction of fuel consumption. This trade-off is addressed by an energy and emission management, which controls the split of the propulsion power between the combustion engine and electric motor, the electric catalyst heating and the selection of the combustion mode. Such management systems are presented and compared within a detailed simulation framework, for a 48V P0 Diesel hybrid including an exhaust aftertreatment system with an electrically heated catalyst. The results for different driving scenarios are compared to those from a conventional non-hybrid vehicle. With the help of the electrically heated catalyst the NOx level was reduced significantly especially during city and short distance drives. On the WLTC a CO2 saving of 7 % was achieved.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Attention: This item is not yet published. Pre-Order to be notified, via email, when it becomes available.
Members save up to 18% off list price.
Login to see discount.
Special Offer: With TechSelect, you decide what SAE Technical Papers you need, when you need them, and how much you want to pay.

Due to current capacity constraints, printed versions of our publications - including standards, technical papers, EDGE Reports, scholarly journal articles, books, and paint chips - may experience shipping delays of up to two weeks. We apologize for any inconvenience.
X