Browse Publications Technical Papers 2020-37-0028

Multidisciplinary Investigation of Truck Platooning 2020-37-0028

In the age of environmental challenges, and with it the demand for increasing energy efficiency of commercial vehicles, truck platooning is discussed as a promising approach. The idea is several trucks forming an automated convoy - with the lead truck sending out acceleration, braking and steering signals for the following trucks to react accordingly. The benefits address fuel savings, traffic capacity, safety requirements and convenience. In our study, we will motivate why platooning requires a multidisciplinary approach in the sense of connecting different modeling and simulation methods. The simulation topics covered are aerodynamic analysis, vehicle-to-vehicle (V2V) communication, radar antenna placement and virtual drive cycle test for the energy evaluation of a truck platoon in comparison to a single truck. Aerodynamic analyses are conducted using a transient Lattice Boltzmann approach on GPUs capturing the complex vehicle wake interactions for different platooning distances with acceptable computational effort. Thereby, a generic truck convoy, consisting of three vehicles, is considered for distance intervals between 7 and 40 meters. From these computations for each vehicle look-up-tables are derived for interpolation of the aerodynamic resistance in the drive cycle simulation. As an automated convoy is considered, V2V communication is necessary to control the distance intervals. The signal quality needs to satisfy safety requirements and is depending on the placement of the antennas. It is evaluated by numerical high-frequency electromagnetic simulation. Finally, the drive cycle simulation estimates energy savings for each vehicle with its propulsion and resistance characteristics or the combined convoy for a generic example.


Subscribers can view annotate, and download all of SAE's content. Learn More »


Members save up to 17% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.