Browse Publications Technical Papers 2020-37-0029

Next-Generation Refrigerant and Air Conditioner System Choice for Internal Combustion, Hybrid and Electric Vehicles (Presentation Only) by Stephen O. Andersen, Jiangping Chen, Sourav Chowdhury, Tim Craig, Walter Ferraris, Jianxin Hu, Sangeet Kapoor, Carloandrea Malvicino, Prasanna Nagarhalli, Nancy J. Sherman, and Kristen N. Taddonio 2020-37-0029

With the passage of Kigali Amendment to the Montreal Protocol in 2016, HFC-134a will need to be phased down in all markets worldwide due to its high global warming potential (GWP=1300). Meanwhile, global adoption of electric vehicles is accelerating. Improved MAC and heat pump efficiency is critically important to extend vehicle range. Engineers must design MAC and heat pump systems using low-GWP refrigerants that are simultaneously cost-effective, energy efficient, safe, reliable, affordable for consumers, and able to provide both cooling and heating of the cabin and thermal management of vehicle components like power electronics and batteries. This is a challenging and complex task. Fortunately, solutions are available, but they may diverge from traditional direct expansion systems of the past. This paper: 1) documents the global history and market status of the development of alternatives to HFC-134a, including secondary-loop (SL-MAC) systems; 2) outlines the existing and expected regulations demanding low-GWP MAC refrigerant and high fuel efficiency; 3) explains the importance of comprehensive LCCP analysis when evaluating MAC climate impacts instead of focusing on only one component of climate impacts, such as refrigerant GWP; 4) explores the limitations of traditional direct expansion (DX) MAC design and considers the automotive, consumer, environmental, and economic benefits of SL-MAC designs; 5) hypothesizes that when electric vehicles dominate future sales, total vehicle thermal management systems will be quite different from today’s standard systems. To increase efficiency, extend range, and achieve the highest LCCP, heat pump systems may dominate the market in cold climates, and efficient SL-MACs using low-GWP HFC-152a or hydrocarbons (e.g. R290) may prove to be optimal in climates with high ambient temperature; and 6) describes the steps that engineers and professional service practitioners are currently taking through professional associations to assure that future designs can be safely and successfully implemented.


Subscribers can view annotate, and download all of SAE's content. Learn More »


Attention: This item is not yet published. Pre-Order to be notified, via email, when it becomes available.
Members save up to 18% off list price.
Login to see discount.
Special Offer: With TechSelect, you decide what SAE Technical Papers you need, when you need them, and how much you want to pay.

Due to current capacity constraints, printed versions of our publications - including standards, technical papers, EDGE Reports, scholarly journal articles, books, and paint chips - may experience shipping delays of up to two weeks. We apologize for any inconvenience.