Browse Publications Technical Papers 2021-01-0191

Scenario Uncertainty Modeling for Predictive Maintenance with Recurrent Neural Adaptive Processes (RNAPs) 2021-01-0191

For commercial-vehicle Original Equipment Manufacturers (OEMs), predictive maintenance has drawn attention for the benefits of money saving and increased road safety. Data-driven models have been widely explored and implemented as predictive maintenance solutions. However, the working scenarios for different commercial-vehicles vary a lot, which makes it difficult to build a universal model suitable for all the cases. In this paper, we propose a Recurrent Neural Adaptive Processes (RNAPs) network to adapt to different scenarios by modeling the uncertain at the same time. The ensemble network combines the traits of neural processes, recurrent neural network and meta learning together. Neural processes consider the context information to calculate the uncertainty and improve the prediction results. Meta-learning works well when dealing with few-shot multi-tasks learning, and recurrent networks are utilized as the encoder of the proposed model to process time-series data. We also investigate how to utilize the proposed model for regression and classification tasks of predictive maintains projects. At last we show that the ensemble model could improve the accuracy when the data are highly various and imbalanced by testing the models on two detailed tasks using real world data.


Subscribers can view annotate, and download all of SAE's content. Learn More »


Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.