Browse Publications Technical Papers 2021-01-0318

Anti-Rollover of the Counterbalanced Forklift Truck Based on Zero-Moment Point 2021-01-0318

The counterbalanced forklift truck in the high-speed emergency steers and other extreme conditions, the single side of forklift is off the ground, which will cause a rollover, and the larger safety accidents are likely to occur and even endanger the safety of drivers. Aiming at the problem of judging the safety domain in the process of forklift driving, this paper proposes a strategy for dividing the forklift’s driving state on the basis of the zero-moment point. The relationship between the zero-moment point’s lateral component and the forklift’s support plane is used as the basis for division. The forklift rollover process is divided into a safe stage, a controllable danger stage, and a critical rollover stage. In the safe stage, the cylinder does not provide support force, and in the controllable danger stage, the cylinder support force is adjusted on the basis of the model predictive control algorithm to adjust the forklift. The cylinder can be controlled to provide maximum support for the body during the critical rollover phase. This method takes the three-degrees-of-freedom forklift anti-rollover model as the control object and serves as the basis for the calculation of the zero-moment point. The anti-rollover controller is built in MATLAB/Simulink to simulate the European standard operating conditions. Results show that the predictive control of the forklift anti-rollover model based on the zero-moment point can effectively improve the body attitude of the forklift during high-speed steering and prevent the forklift from rolling over.


Subscribers can view annotate, and download all of SAE's content. Learn More »


Members save up to 18% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.