An Automated Workflow for Efficient Conjugate Heat Transfer Analysis of a Diesel Engine 2021-01-0402
The internal combustion engine’s performance is affected by in-cylinder combustion processes and heat transfer rates through the combustion chamber walls. Hot spots may affect the reliability and durability of the engine components. Design of efficient and effective coolant systems requires accurate accounting of the heat fluxes into and out of the solid parts during the engine operation. The need to assess the engine’s performance early in the design process has motivated the use of a computational approach to predict such data. A more accurate representation of the engine’s operation is obtained by coupling the thermal, flow, and combustion analysis of the various components, such as the combustion chamber, ports, engine block, and its cooling system. Typically, a stand-alone CFD simulation does not capture the complex nature of the problem, and the manual transfer of data between multiple analyses may lead to an onerous or error-prone workflow requiring multiple user interventions. Here we present an accurate and efficient workflow for the conjugate heat transfer analysis of a diesel engine conducted using Ansys System Coupling software [1]. This workflow allows a full coupling between the fluid flow and combustion processes inside the combustion chamber, performed using Ansys Forte software [2], with the fluid flow and thermal analysis on the surrounding engine block carried out using Ansys Fluent [3]. The coupling is fully automated within a framework that handles the data exchange and manages the iterative solution between the two solvers to convergence.
Citation: Chukwuemeka, E., Litrico, G., Puduppakkam, K., Garratt, T. et al., "An Automated Workflow for Efficient Conjugate Heat Transfer Analysis of a Diesel Engine," SAE Technical Paper 2021-01-0402, 2021, https://doi.org/10.4271/2021-01-0402. Download Citation
Author(s):
Edison Chukwuemeka, Giuliana Litrico, Karthik Puduppakkam, Tony Garratt, Cheng Wang, Yue Wang, Oleg Chernukhin, Sulipi Desai, Ellen Meeks
Affiliated:
Louisiana State University, ANSYS Inc
Pages: 10
Event:
SAE WCX Digital Summit
ISSN:
0148-7191
e-ISSN:
2688-3627
Related Topics:
Combustion and combustion processes
Engine components
Diesel / compression ignition engines
Combustion chambers
Engines
Data exchange
SAE MOBILUS
Subscribers can view annotate, and download all of SAE's content.
Learn More »