Browse Publications Technical Papers 2021-01-0729

Design and Structural Parameters Analysis of the Turbine Rotor in Fuel Cell Vehicle 2021-01-0729

As the most power-consuming component of the fuel cell system, the compressor directly affects the efficiency of the system. Using turbines to recover energy from the exhaust gas, has become a feasible means to improve the fuel cell system’s efficiency. Previous designs are mainly based on high-temperature (>523.15 K) gas. However, the exhaust gas temperature of the proton exchange membrane fuel cell is only about 348.15 K, which is much lower than the working fluid temperature of typical turbines (such as those used in internal combustion engine). In this paper, a turbine rotor for a 100kW fuel cell system was designed. The influences of non-design structural parameters including blade inlet incline angle, blade thickness, blade tip clearance and blade number on the aerodynamic performance and internal flow of the rotor are investigated. Computational fluid dynamic (CFD) model of the rotor single flow is established to predict the turbine aerodynamic performance. Results show that the blade number has a significant impact on the flow performance of the turbine rotor. At the design point, the blade number is changed from 11 to 9, thus the mass flow can be increased by 23.86%. Inlet forward-inclined rotors are more suitable for low-temperature turbines for fuel cell vehicles, which can effectively decrease pressure gradient in the height direction, which is beneficial to reduce the secondary flow loss and the tip leakage loss.


Subscribers can view annotate, and download all of SAE's content. Learn More »


Members save up to 18% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.