Browse Publications Technical Papers 2021-24-0081
2021-09-05

Estimation of Speciation Data for Hydrocarbons using Data Science 2021-24-0081

Strict regulations on air pollution motivates clean combustion research for fossil fuels. To numerically mimic real gasoline fuel reactivity, surrogates are proposed to facilitate advanced engine design and predict emissions by chemical kinetic modelling. However, chemical kinetic models could not accurately predict non-regular emissions, e.g. aldehydes, ketones and unsaturated hydrocarbons, which are important air pollutants. In this work, we propose to use machine-learning algorithms to achieve better predictions. Combustion chemistry of fuels constituting of 10 neat fuels, 6 primary reference fuels (PRF) and 6 FGX surrogates were tested in a jet stirred reactor. Experimental data were collected in the same setup to maintain data uniformity and consistency under following conditions: residence time at 1.0 second, fuel concentration at 0.25%, equivalence ratio at 1.0, and temperature range from 750 to 1100K. Measured species profiles of methane, ethylene, propylene, hydrogen, carbon monoxide and carbon dioxide are used for machine-learning model development. The model considers both chemical effects and physical conditions. Chemical effects are described as different functional groups, viz. primary, secondary, tertiary, and quaternary carbons in molecular structures, and physical conditions as temperature. Both the Machine-learning models used in this study showed a good prediction accuracy with a test set regression score of 97.75 for support vector regression and 91.07 for random forest regression. This finding shows the great potential of machine learning application on combustion chemistry. By expanding the experimental database, machine-learning models can be further applied to many other hydrocarbons in future work.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
X