Browse Publications Technical Papers 2021-26-0045
2021-09-22

Reinforcement Learning Technique for Parameterization in Powertrain Controls 2021-26-0045

As climate change looms large, the automotive industry gears up for an Electric Vehicle (EV) transition to pull down our net global greenhouse emissions to zero together with the clean energy transition. It becomes the need of the hour to optimize the use of our resources and meet the requirements of time, effort, cost, accuracy and transient performance brought in by the stringent emission norms and the Real Driving Emissions (RDE) test.
The authors present a Reinforcement learning technique to address the real-world challenges for accelerated product development. Reinforcement Learning was used to parameterize a time varying electromechanical system and proved effective in modelling the stochastic nature of processes in powertrain development.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
X