Browse Publications Technical Papers 2022-01-0149
2022-03-29

Road Crossing Assistance Method Using Object Detection Based on Deep Learning 2022-01-0149

This paper describes a method for assisting pedestrians to cross a road. As motorization develops, pedestrian protection techniques are becoming more and more important. Advanced driving assistance systems (ADAS) are improving rapidly to provide even greater safety. However, since the accident risk of pedestrians remains high, the development of an advanced walking assistance system for pedestrian protection may be an effective means of reducing pedestrian accidents. Crossing a road is one of the highest risk events, and is a complex phenomenon that consists of many dynamically changing elements such as vehicles, traffic signals, bicycles, and the like. A road crossing assistance system requires three items: real-time situational recognition, a robust decision-making function, and reliable information transmission. Edge devices equipped with autonomous systems are one means of achieving these requirements. Situational recognition when crossing a road must identify the pedestrian traffic signals and the crosswalk. Various research has been published regarding the recognition of vehicle traffic signals and crosswalks using in-vehicle cameras. However, since crosswalks (and pedestrians) have conventionally been treated as risks or obstacles for vehicles rather than as guides for crossing, these recognition methods cannot be diverted directly for pedestrian assistance. This paper proposes a novel methodology for walking assistance that includes an image recognition system based on a combination of convolute neural network (CNN) and computational visualization technologies (CV). The proposed methodology also includes a robust judgment algorithm for crossing roads. The proposed method is implemented on edge devices, and its efficacy has been confirmed in field tests. The developed system is considered to be effective and efficient for providing walking assistance.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Towards Autonomous Cruising on Highways

901484

View Details

TECHNICAL PAPER

Application of Neural Networks to Automatic Climate Control

2000-05-0341

View Details

TECHNICAL PAPER

MTCNN-KCF-deepSORT:Driver Face Detection and Tracking Algorithm Based on Cascaded Kernel Correlation Filtering and Deep SORT

2020-01-1038

View Details

X