Browse Publications Technical Papers 2022-01-0157

A Hybrid Approach Combining LSTM Networks and Kinematic Rules for Vehicle Velocity Estimation 2022-01-0157

Vehicle speeds, in both longitudinal and lateral directions, are vital signals for vehicular electronic control systems. In in-wheel motor-driven vehicles (IMDVs), because no slave wheel can be used for reference, it becomes more challenging to conduct velocity estimation, especially when all wheels turn to slip. To reduce the dependence of speed estimation on physical plant parameters and environment perception, in this work, we develop a new method that estimates the longitudinal and lateral velocities of an IMDV by using the kinematic model with the Kalman Filter. For longitudinal velocity measurement, we propose a hybrid approach combining Long-Short Term Memory (LSTM) networks and the kinematic rules to obtain a reliable estimation. More specifically, when at least one effective driven wheel is available, that is, no-slip happening, the longitudinal velocity can be derived using the average of those effective wheels' rotational speeds. When all driven wheels slip, the information of longitudinal velocity can be provided by the LSTM network. The previous longitudinal velocity is augmented in the input features to improve the learning accuracy of the estimation. Moreover, the cumulative errors caused by acceleration integration are avoided, and the precision is thus improved. Finally, hardware-in-the-loop (HiL) tests are carried out on dSPACE/SCALEXIO to verify the feasibility and effectiveness of the proposed method.


Subscribers can view annotate, and download all of SAE's content. Learn More »


Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:

Innovations in Automotive and Aerospace Assembly

View Details


The Future of Visual Navigation: Technology Leadership Brief


View Details


Sensor Fusion as the Key in a Unified and Robust Commercial Vehicle Driver Assistance System


View Details