Browse Publications Technical Papers 2022-01-0737

Development of an Adaptive Efficient Thermal/Electric Skipping Control Strategy Applied to a Parallel Plug-in Hybrid Electric Vehicle 2022-01-0737

In recent years automobile manufacturers focused on an increasing degree of electrification of the powertrains with the aim to reduce pollutants and CO2 emissions. Despite more complex design processes and control strategies, these powertrains offer improved fuel exploitation compared to conventional vehicles thanks to intelligent energy management. A simulation study is here presented aiming at developing a new control strategy for a P3 parallel plug-in hybrid electric vehicle. The simulation model is implemented using vehicle modeling and simulation toolboxes in MATLAB/Simulink. The proposed control strategy is based on an alternative utilization of the electric motor and thermal engine to satisfy the vehicle power demand at the wheels (Efficient Thermal/Electric Skipping Strategy - ETESS). The choice between the two units is realized through a comparison between two equivalent fuel rates, one related to the thermal engine and the other related to the electric consumption. An adaptive function is introduced to develop a charge-blended control strategy. The novel adaptive control strategy (A-ETESS) is applied to estimate fuel consumption along different driving cycles. The control algorithm is implemented on a dedicated microcontroller unit performing a Processor-In-the-Loop (PIL) simulation. To demonstrate the reliability and effectiveness of the A-ETESS, the same adaptive function is built on the Equivalent Consumption Minimization Strategy (ECMS). The PIL results showed that the proposed strategy ensures a fuel economy similar to ECMS (worse of about 2% on average) and a computational effort reduced by 99% on average. This last feature reveals the potential for real-time on-vehicle applications.


Subscribers can view annotate, and download all of SAE's content. Learn More »


Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:

Model Based Optimization of Supervisory Control Parameters for Hybrid Electric Vehicles


View Details


The Optimization of Control Parameters for Hybrid Electric Vehicles based on Genetic Algorithm


View Details


Instantaneous Optimization-based Energy Management Control Strategy for Extended Range Electric Vehicle


View Details