Browse Publications Technical Papers 2022-01-0817
2022-03-29

Identifying Pedal Misapplication Behavior Using Event Data Recorders 2022-01-0817

Pedal misapplication (PM) crashes, i.e., crashes caused by a driver pressing one pedal while intending to press another pedal, have historically been identified by searching unstructured crash narratives for keywords and verified via labor-intensive manual inspection. This study proposes an alternative method to identify PM crashes using event data recorders (EDRs). Since drivers in emergency braking situations are motivated to hit the brake hard, it follows that drivers in emergency braking situations that commit a PM would likewise hit the accelerator hard, likely harder than accelerator pedal application during normal driving. Thus, the time-series accelerator pedal position and the derived accelerator pedal application rate were used to isolate accelerator misapplications. Additional strategic filters were applied based on characteristics observed from previous PM analyses to reduce false positive PM identifications. These include a crash type filter, since PM crashes have been shown to manifest as majority road departure, end departure, rear-end, and forward impact crash types. After analyzing pre-crash EDR data from the National Automotive Sampling System Crashworthiness Data System (NASS/CDS) case years 1997 to 2015, evidence of PM was observed in 4.3% of weighted events. This result was substantially higher than the previously estimated 0.2% PM frequency [1,2]. The time-to-collision (TTC) at the point of PM was calculated for each case, and over 50% of cases had a TTC of less than 2.0 seconds. Over one-third of these drivers engaged the accelerator to 99% of pedal stroke or above and over one-eighth of drivers engaged both the brake and the accelerator pedals simultaneously during the recorded pre-crash period.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
We also recommend:
JOURNAL ARTICLE

Nonlinear Optimization in Vehicular Crash Reconstruction

2015-01-1433

View Details

TECHNICAL PAPER

Modeling of Pedestrian Behavior in Crossing Urban Road for Risk Prediction Driving Assistance System

2011-28-0085

View Details

TECHNICAL PAPER

The Validation of Auto Rickshaw Model for Frontal Crash Studies Using Video Capture Data

2020-28-0490

View Details

X