Browse Publications Technical Papers 2022-24-0007
2022-09-16

Optimization of Water Cooling for High Power Density Electrical Machines 2022-24-0007

The power density of electric machines is a critical factor in various applications, i.e. like the power train. A major factor to improve the power density is boosting the electric current density, which increases the losses in the limited volume of the electric machine. This results in a need for an optimized thermal design and efficient cooling. The dissipation of heat can be achieved in a multitude of ways, ranging from air cooling to highly integrated cooling solutions. In this paper, this variety is shown and analyzed with a focus on water cooling. Further various structures in electric machines are presented.
A planar testbench is built to systematically analyze water cooling geometries. The focus lies in providing different power loss distributions along cooling channels, accurate temperature readings in a multitude of locations, as well as the pressure drop across the channel. The test bench results are aligned with simulations and simplified analytical evaluation to support the development process.
The main goal in this paper is to determine temperature gradients in the material close to the stator to quantize the potential for future cooling jacket designs. One question to answer is: How large the gradient is considering a realistic power loss distribution. Another sensible point are the different thermal expansions of aluminum used in cooling jackets and the steel core of the stator. This can be bypassed by using a steel cooling jacket. In this case, the performance of a steel cooling jacket compared to an aluminum version is investigated and also if light weight construction can compensate the lower thermal conductivity of steel.
After the analysis, an outlook about future changes of the measurement methods are given and first potentials for future cooling jackets are proposed.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
X