Browse Publications Technical Papers 2022-37-0006
2022-06-14

3D-CFD Methodologies for a Fast and Reliable Design of Ultra-Lean SI Engines 2022-37-0006

The continuous pursuit of higher combustion efficiencies, as well as the possible usage of synthetic fuels with different properties than fossil-ones, require reliable and low-cost numerical approaches to support and speed-up engines industrial design. In this context, SI engines operated with homogeneous ultra-lean mixtures both characterized by a classical ignition configuration or equipped with an active prechamber represent the most promising solutions. In this work, for the classical ignition arrangement, a 3DCFD strategy to model the impact of the ignition system type on the CCV is developed using the RANS approach for turbulence modelling. The spark-discharge is modelled through a set of Lagrangian particles, whose velocity is modified with a zero-divergence perturbation at each discharge event, then evolved according to the Simplified Langevin Model (SLM) to simulate stochastic interactions with the surrounding gas flow. For the active prechamber configuration, instead, a CFD methodology based on a 3DRANS approach is proposed to model the combustion process, in which the air-fuel mixture distribution inside the prechamber is properly considered without a 3D simulation of the main chamber intake process. This is carried out through a non-reacting simulation of the prechamber-only until IVC, then results are interpolated on a different 3D engine mesh for the further compression and combustion stages. The proposed methodologies were assessed and validated against experimental measurements at different operating conditions.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
X