Browse Publications Technical Papers 2023-01-0696
2023-04-11

Optimized PID Controller Using Genetic Algorithm for Anti-lock Brake System 2023-01-0696

The anti-lock brake system (ABS) is a vital system in modern vehicles that prevents automotive wheels from locking during an emergency brake. This paper aims to introduce an efficient, optimized proportional integral derivative (PID) controller tuned using a genetic algorithm (GA) to enhance the performance of ABS. The PID control method is a very famous control algorithm employed in numerous engineering applications. The GA is used to solve the nonlinear optimization problem and search for the optimum PID controller gains by identifying the solution to the problem. A mathematical model of ABS is derived and simulated using Matlab and Simulink software. The proposed optimized PID-controlled ABS is compared to the conventional ABS controlled using a Bang-Bang controller. System performance criteria are evaluated and assessed under different road adhesion coefficient values to judge the success of the proposed PID controller tuned using GA. The simulated results indicate that the proposed PID controller can offer a significant improvement of ABS performance under any value of road adhesion coefficient.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
X