Browse Publications Technical Papers 2023-01-1508

Analysis and Testing of Optimal Power Control Strategy for NASA Moon Base Interconnected DC Microgrid System 2023-01-1508

As a part of NASA’s efforts in space, options are being examined for an Artemis moon base project to be deployed. This project requires a system of interconnected, but separate, DC microgrids for habitation, mining, and fuel processing. This in-place use of power resources is called in-situ resource utilization (ISRU). These microgrids are to be separated by 9-12 km and each contains a photovoltaic (PV) source, energy storage systems (ESS), and a variety of loads, separated by level of criticality in operation. The separate microgrids need to be able to transfer power between themselves in cases where there are generation shortfall, faults, or other failures in order to keep more critical loads running and ensure safety of personnel and the success of mission goals. In this work, a 2 grid microgrid system is analyzed involving a habitation unit and a mining unit separated by a tie line. A set of optimal controls that has been developed, including power flow controls on the tie line, dispatch of PV generation, and dispatch of non-critical loads, is analyzed, and validated in hardware on the Secure Scalable Microgrid Testbed (SSMTB). This testbed includes hardware emulators for a variety of energy sources, energy storage devices, pulsed loads, and other loads.


Subscribers can view annotate, and download all of SAE's content. Learn More »


Members save up to 17% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.