Browse Publications Technical Papers 2023-32-0056
2023-09-29

Research on Wall Temperature of Flame-wall Interaction Based on Laser-Induced Phosphorescence and Heat Transfer Simulation 2023-32-0056

Heavy heat load is one of the bottlenecks restricting the highly intensive marine engine development. Reducing wall heat loss contributes to this target. The wall heat transfer is mainly influenced by flame-wall interaction (FWI). In this paper, a wall temperature distribution measurement system is developed based on the Laser-Induced Phosphorescence (LIP). The effects of the coating thickness and the laser fluence on LIP are studied to clarify the accuracy of wall temperature measurement based on LIP and the one-dimensional wall temperature distribution. In addition, a conjugate heat transfer model of FWI was established based on CONVERGE to simulate the FWI and the accompanying heat transfer process. The simulation is compared with the experimental wall temperature results and demonstrates the effectiveness of the conjugate heat transfer model. The influence of the initial velocity, the impinging distance and the wall roughness on the wall heat transfer are studied. The effective way to reduce the wall heat loss is explored, and the conjugate heat transfer model of FWI is considered to be potential to contribute to the mechanism research of FWI.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
X