Browse Publications Technical Papers 2024-01-2542
2024-04-09

CAATS – Automotive Wind Tunnel Statistical Process Control 2024-01-2542

This paper presents the application of statistical process control (SPC) methods to Windshear, a 180-mph motorsports and automotive wind tunnel equipped with a wide-belt rolling road system. The SPC approach captures the complete variability of the facility and offers useful process performance metrics that are based on a sound statistical framework. Traditional control charts are explored, emphasizing the uniqueness of variability experienced in wind tunnels which includes significant, unexplained short-term and long-term variation compared to typical manufacturing processes. This unique variation is elegantly captured by the three-way control chart, which is applied to estimate the complete process reproducibility with different levels of repeatability of vehicle drag coefficient. The sensitivity of three-way control charts is explored including the evaluation of an alternate group assignment within the same dataset. A practical example is provided evaluating secondary boundary layer fan performance after a failure event to demonstrate the effectiveness of three-way control charts in establishing and maintaining a rigorous automotive wind tunnel maintenance program. SPC charts and their resultant analysis are a function of the test matrix that generates them. The development of a rigorous SPC test matrix is discussed including an example provided by Windshear. This paper is part of a global effort to Commonize Automotive Aerodynamic Testing Standards (CAATS) launched by the Subsonic Aerodynamic Testing Association (SATA).

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
X