Browse Publications Technical Papers 2024-01-5034
2024-03-14

Synergistic Impact of Mechanical Properties on Friction Stir Welding Zone Formation in Magnesium Alloy: An Optimized Approach 2024-01-5034

A growing number of industries are utilizing friction stir welding (FSW), which has shown promise for joining different materials. In this study, the impacts of rotation speed and tool pin shape are examined, as well as the FSW zone generation in the magnesium alloy AZ31. The physical attributes of rotation speed, feed rate, pin profile shape, and the mechanical properties of the AZ31 magnesium alloy hardness, impact energy, and tensile strength are examined in this research to determine the properties of FSW. Under optimal conditions, taper-threaded tool pins, 40 mm/min welding speed, and 1000 rpm rotation speed achieved maximal micro-hardness. The FSW tool creates heat at 1000 rpm, improving the softened metal’s mechanical properties. Thus, the metal content in the stir zone was uniform. Some process variables impacted the response surface methodology (RSM) parametric design and subsequent optimization procedure. According to the analysis, the tool’s rotational speed was the key progression variable with the most statistical influence on metal characteristics. Nonetheless, tool pin design and welding speed are other variables that significantly influence mechanical properties.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
X