The authors present in this paper an explanation of gaseous detonation based upon what are considered incontrovertible laws, and show by the functioning of these well understood natural laws that gaseous detonation is a phenomenon that does not require any hypothetical assumptions to account for its existence.
The physical conditions that must exist within an enclosed container when it is filled with an explosive mixture of gases and these gases are ignited are stated and analyzed mathematically, and an application of this analysis is made to the internal-combustion engine. The apparatus and the procedure are described inclusive of photographs and charts, and it is shown how the formulas can be applied (a) for constant throttle, by varying the temperature of the entering charge and (b) for constant temperature, by varying the throttle opening and the compression-ratio. The results are illustrated and discussed in some detail.
Appendix 1 refers to the basic equations in the paper and has as its object the combination of these equations
No Caption Available
No Caption Available
into a single fundamental expression containing P1 and P2 as the only variables.
Appendix 2 is a mathematical determination of the critical pressure of detonation.


Subscribers can view annotate, and download all of SAE's content. Learn More »


Members save up to 40% off list price.
Login to see discount.
Special Offer: With TechSelect, you decide what SAE Technical Papers you need, when you need them, and how much you want to pay.