1962-01-01

X-Ray Determination of Residual Stresses and Hardness in Steel Due to Thermal, Mechanical, and Fatigue Deformations 620053

Residual stress and hardness in steel due to thermal, mechanical, and fatigue deformations are determined by an X-ray diffraction method. The sharp temperature rise associated with electrical discharge machining causes austenitizing, rehardening, and tempering, and results in high tensile residual stress. Shot-peening quality is evaluated from residual stress and hardness induced by the peening. Rolling contact fatigue of carburized and hardened bearings causes a transformation of austenite to martensite, and thereby generates more residual compression, and also causes permanent fatigue softening. Less softening is observed in inner races of consutrode and cross-forged steels than in air-melted steel, and the former steels exhibit greater fatigue life at early and mean failure levels.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
X