A Comparison by Thermal Analysis of Rotor Alloys for Automobile Disc Brakes 700137

The effect of rotor alloy composition on thermal conditions in a disc brake system was determined analytically. The three alloys selected were gray cast iron, 356 aluminum, and copper -1% chromium. This study includes calculations of the temperature and heat storage in the various portions of the brake system, as well as the variations of convective heat transfer throughout the system. These computations were made for the transient conditions existing during a series of 60 mph stops (15 ft/sec2 deceleration). The steady-state rotor surface temperature and the thermal gradients were found to decrease with increasing thermal conductivity of the alloys. The rotor surface temperatures for the first two stops were relatively independent of thermal conductivity, but were strongly dependent on heat capacity. Convection was found to occur almost entirely (greater than 90%) from the rotor surface and ventilating passages.


Subscribers can view annotate, and download all of SAE's content. Learn More »


Members save up to 40% off list price.
Login to see discount.
Special Offer: With TechSelect, you decide what SAE Technical Papers you need, when you need them, and how much you want to pay.