1973-02-01

APPLICATIONS OF ADVANCED AERODYNAMIC TECHNOLOGY TO LIGHT AIRCRAFT 730318

This paper discusses a project for adapting advanced technology, much of it borrowed from the jet transport, to general aviation design practice. The NASA funded portion of the work began in 1969 at the University of Kansas and resulted in a smaller, experimental wing with spoilers and powerful flap systems for a Cessna Cardinal airplane. The objective was to obtain increased cruise performance and improved ride quality while maintaining the take-off and landing speeds of the unmodified airplane. Some flight data and research pilot comments are presented.
The project was expanded in 1972 to include a light twin-engine airplane. For the twin there was the added incentive of a potential increase in single-engine climb performance. The expanded project is a joint effort involving the University of Kansas, Piper Aircraft Company, Robertson Aircraft Company, and Wichita State University. The use of a new high-lift Whitcomb airfoil is planned for both the wing and the propellers. Preliminary data on the characteristics of the new airfoil are discussed. The configuration of an experimental wing for a Piper Seneca PA-34 and estimated airplane performance with this wing are discussed.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 18% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Wind Tunnel and Flight Development of Spoilers for General Aviation Aircraft

750523

View Details

TECHNICAL PAPER

Evaluation of Visual Failure versus Aerodynamic Limit for a Snow Contaminated Anti-Iced Wing Section during Simulated Takeoff

2019-01-1972

View Details

TECHNICAL PAPER

High-Lift Airfoil Section for Low Reynolds Number Application

951978

View Details

X