Ethylene Propylene Elastomer Technology for Improved High Temperature Serviceability 750962

The heat resistance of ethylene propylene co- and terpolymer vulcanizates has been studied over temperatures from 212F (100C) to 347F (175C) and exposure times up to and sometimes exceeding 1000 hours. Most established heat aging analyses rely on separate treatment of two parameters, retention of tensile strength or retention of elongation, to predict acceptable performance. This paper discusses a method with which to study aging behavior that combines these parameters into a single expression, the fractional strain energy at break, which describes an aged vulcanizate in terms of both its integrity (retained tensile) and its extensibility (retained elongation). Use of fractional strain energy at break is shown to be a reliable means of characterizing and projecting ethylene propylene aging behavior.
Compounding principles which affect ethylene propylene long term heat resistance are demonstrated in the paper. These include the importance of the proper vulcanization system, the effects of different fillers and plasticizers, the original quality level of the vulcanizate, and the selection of special additives to improve aging. Most of the data presented feature ethylene propylene terpolymers (EPDM), which offer a good balance between heat resistance and compounding versatility; however, for those EP uses which require maximum long term, high temperature resistance, it is shown that the best serviceability is achieved with ethylene propylene copolymers (EPM).


Subscribers can view annotate, and download all of SAE's content. Learn More »


Members save up to 43% off list price.
Login to see discount.
Special Offer: With TechSelect, you decide what SAE Technical Papers you need, when you need them, and how much you want to pay.