1976-02-01

Finite Element Stress Analysis of Automotive Wheels 760085

A method is shown for the analysis of stresses in automobile wheels. The structure is represented by a set of interconnected elements of finite size. The stresses calculated within each element describe the stress distribution in the cross-section and indicate how an optimum distribution of material may be determined. Formulation of the stiffness matrix of a constant strain triangular element for axisymmetric problems is given, together with the needed modifications for nonaxisymmetric loadings and anisotropic material properties. Illustrative examples show the stress distribution in a 13-inch rim caused by inflating a radial tire that is mounted on it. The examples also show the effects of varying the rim width on the contact pressures at the tire-rim interface and on the maximum principal stress in the wheel.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

A Finite Element Analysis of Truck Wheels

871264

View Details

TECHNICAL PAPER

Finite Element Analysis and Structural Optimization of Vehicle Wheels

830133

View Details

TECHNICAL PAPER

Bead Contact Pressure Measurements at the Tire-Rim Interface

750458

View Details

X