Neuromuscular Cervical Spine Model for Whiplash 760770

A computer model of the neuromusculature and passive elements of the cervical spine during whiplash is presented. The model indicates that the neuromusculature increases the rotational stability of the cervical spine during low level accelerations. This results in decreased bending but increased axial compressive stresses in the passive structures and increased axial tensile stresses in the neuromusculature. Increased neural feedback augments peak acceleration and stress because the “active” neuromusculature causes a flexion response near the end of the acceleration pulse. A decrease in neural delay time allows the muscles to act earlier and decrease peak accelerations and bending stresses.


Subscribers can view annotate, and download all of SAE's content. Learn More »


Members save up to 43% off list price.
Login to see discount.
Special Offer: With TechSelect, you decide what SAE Technical Papers you need, when you need them, and how much you want to pay.