Development of a Predictive Tool for In-Cylinder Gas Motion in Engines 780315

A method is described of calculating the flow, temperature and turbulence fields in cylinder configurations typical of a direct-injection diesel engine. The method operates by solving numerically the Navier Stokes equations that govern the flow, together with additional equations representing the effects of turbulence. A general curvilinear-orthogonal grid that translates with the piston motion is used for the calculations in the complex-shaped piston bowl, whilst an expanding/contracting grid is used elsewhere. Predictions are presented showing the evolution of the velocity and turbulence fields during the compression and expansion phases of a motored engine cycle, for various shapes of axisymmetric piston bowl and various initial swirl levels. These results illustrate the strong influence of these factors on the TDC flow structure.


Subscribers can view annotate, and download all of SAE's content. Learn More »


Members save up to 40% off list price.
Login to see discount.
Special Offer: With TechSelect, you decide what SAE Technical Papers you need, when you need them, and how much you want to pay.