1979-02-01

Numerical Prediction of Axisymmetric Laminar and Turbulent Flows in Motored, Reciprocating Internal Combustion Engines 790356

The flowfield in a motored axisymmetric reciprocating internal combustion engine is calculated as a function of space and time throughout the complete four stroke cycle, by means of a computational procedure which solves the governing partial differential equations on a mesh which expands and contracts with the motion of the piston, using an implicit, iterative, finite-difference scheme. Numerical results are presented for laminar and turbulent conditions. In the last case, two additional conservation equations, the kinetic energy of turbulence and its dissipation rate, are solved. In both cases, an axisymmetric configuration and a centrally-located valve, which opens and closes instantaneously have been studied. The results corresponding to the laminar case show the formation of a large vortex during the intake stroke. As the fluid is compressed, the intensity of the vortex decays, and its decay persists throughout most of the expansion stroke. The turbulent case results show that the turbulence is clearly generated during the intake stroke due to the shear layers on the sides of the incoming air jet and is then convected and diffused through the cylinder.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

PIV In-Cylinder Flow Measurements of Swirl and the Effect of Combustion Chamber Design

2004-01-1952

View Details

TECHNICAL PAPER

An Experimental and Computational Evaluation of Two Dual-Intake-Valve Combustion Chambers

902140

View Details

TECHNICAL PAPER

The Effect of Induced Swirl Pattern on TDC Flow Field in a HSDI Diesel Engine

2005-26-319

View Details

X