Occupant Dynamics as a Function of Impact Angle and Belt Restraint 801310

Sled tests were conducted to investigate the dynamics of a Part 572 dummy as a sfunction of the belt restraint configuration and impact direction. The tests involved a 35 km/h velocity change and 10 g deceleration. An “opened” fixture, free of intervening surfaces, was oriented from frontal (0°), through oblique (±30°,±45°, ±60°), to full lateral (±90°).
Restraint by only a lap belt resulted in the dummy's upper body rotating about the lap belt and continuing in the direction of sled deceleration. Restraint by a lap-shoulder belt greatly reduced upper-body displacement. However, the displacement and body loading were strongly dependent on the direction of deceleration, i.e., the orientation of the belt relative to the impact direction.
When the belted shoulder was opposite the impact (0° to +90°), the belt retained the upper body for impact angles of 0° to 45°. Although the upper body escaped from the shoulder belt from 60° to 90°, significant kinetic energy was removed from the upper body before escape, even for full lateral deceleration.
When the belted shoulder was on the impact side (0° to -90°), the upper body was restrained for all impact angles. However, the shoulder belt acted directly on the neck with increasing load as the impact became more lateral. Addition of lateral torso restraint, such as with a winged seat greatly reduced the loading of the neck by the shoulder belt for all impact angles.


Subscribers can view annotate, and download all of SAE's content. Learn More »


Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:

Response of Belt Restrained Subjects in Simulated Lateral Impact


View Details


Response of the 6-Month-Old CRABI in Forward Facing and Rear Facing Child Restraints to a Simulated Real World Impact


View Details


Investigations on the Belt-to-Pelvis Interaction in Case of Submarining


View Details