1981-02-01

A Study of the Genesis Mechanism of Unburned Hydrocarbons in a Constant Volume Bomb 810018

The genesis mechanism of unbured hydrocarbons (HC) in a turbulent flow field has been studied by using constant volume cylindrical bombs. To investigate the influence of the turbulence intensity on combustion duration and HC, two different types of turbulence, one was the turbulence generated by swirling flow and the other was the isotropic turbulence, were selected. Results show that HC decreases with increasing the turbulence intensity and is independent of turbulence properties and even weaker turbulence which has little affect on combustion duration has a great deal of effect on HC.
A special technique was devised to freeze a reaction at an arbitrary moment of combustion process. The following points have been made clear. First, the oxidation of HC continues for a while after the pressure has peaked. Second, the reaction rate of post flame oxidation increases with tubulence intensity, but the fraction of HC oxidized after the pressure has peaked is about 60% and is not influenced by the turbulence intensity.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Heat Transfer in the End Gas

870168

View Details

TECHNICAL PAPER

Investigation into the Effect of Flame Propagation in the Gasoline Compression Ignition by Coupling G-Equation and Reduced Chemical Kinetics Combustion Model

2015-01-1799

View Details

TECHNICAL PAPER

A Global Reaction Model for the HCCI Combustion Process

2004-01-2950

View Details

X