1981-02-01

Cummins–TARADCOM Adiabatic Turbocompound Engine Program 810070

This paper describes the progress on the Cummins-TARADCOM adiabatic turbocompound diesel engine development program. An adiabatic diesel engine system adaptable to the use of high performance ceramics which hopefully will enable higher operating temperatures, reduced heat loss, and turbo-charged exhaust energy recovery is presented. The engine operating environments as well as the thermal and mechanical loadings of the critical engine components are covered.
Design criteria are presented and techniques leading to its fulfillment are shown. The present shortcomings of the high performance ceramic design in terms of meeting reliability and insulation targets are discussed, and the needs for composite designs are shown. A ceramic design methodology for an insulated engine component is described and some of the test results are shown. Other possible future improvements such as the minimum friction-unlubricated engine through the use of ceramics are also described.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 18% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.

Due to current capacity constraints, printed versions of our publications - including standards, technical papers, EDGE Reports, scholarly journal articles, books, and paint chips - may experience shipping delays of up to four to six weeks. We apologize for any inconvenience.
We also recommend:
TECHNICAL PAPER

Heat Insulated Turbocompound Engine

831345

View Details

STANDARD

Diesel Engines - Diesel Fuel – Performance Requirement and Test Method for Assessing Fuel Lubricity

J2265_201511

View Details

TECHNICAL PAPER

Further Testing of an Amine-Based Pressure-Swing System for Carbon Dioxide and Humidity Control

2008-01-2101

View Details

X