A decentralized, multivariable controls methodology is being developed for the functional integration of a fighter's aerodynamic controls with those of its propulsion system (inlet, engine, and thrust vectoring/reversing nozzle). Integrated controls account for, and take advantage of the significant cross-coupling between these system elements. A high-fidelity, six-degrees-of-freedom (6 DOF) aircraft simulation has been developed, incorporating advanced tactical fighter features such as variable cycle engines, variable geometry inlets, 2D-CD TV/TR nozzles, canards and a propulsive lift concept. A comprehensive evaluation test plan, including a piloted simulation, has been developed to validate this integrated-controls design methodology. Preliminary results show significant benefits of integrated control in terms of enhanced aircraft maneuverability, precise flight path control, reduced pilot workload, and fault tolerant system design.
Subscribers can view annotate, and download all of SAE's content. Learn More »