A Study of In-Cylinder Air Motion in the General Motors VORTEC™ 4.3L, V-6 Engine 850510

The new GM VORTEC gasoline engine has high fuel efficiency and low cyclic variability of combustion- atributes which resulted from fast burn. Organized mixture motion, in the form of swirl, is an element essential for fast burn. The focus of this study is on in-cylinder air motion and its importance to combustion.
Quantifications of in-cylinder air motions resulting from the intake process (swirl) and from piston motion (squish) were made. Swirl was determined experimentally for both straight and helical intake ports. Squish velocities were derived analytically. To determine the relative importance of squish and swirl, the amount of swirl-flow energy dissipated was compared with the amount of squish-flow energy generated. The comparison showed that swirl was the dominant in-cylinder flow.
The impact of swirl on combustion was quantified, and the minimum amount of swirl needed to measurably influence engine operation was determined. These results also explained why helical ports dramatically improved VORTEC engine smoothness and utilization of 91 RON fuels.


Subscribers can view annotate, and download all of SAE's content. Learn More »


Members save up to 43% off list price.
Login to see discount.
Special Offer: With TechSelect, you decide what SAE Technical Papers you need, when you need them, and how much you want to pay.